Source code for langcheck.metrics.ja.query_based_text_quality

from __future__ import annotations

from langcheck.metrics.eval_clients import EvalClient
from langcheck.metrics.metric_inputs import get_metric_inputs
from langcheck.metrics.metric_value import MetricValue

LANG = "ja"


[docs] def answer_relevance( generated_outputs: list[str] | str, prompts: list[str] | str, eval_model: EvalClient, ) -> MetricValue[float | None]: """Calculates the relevance of generated outputs to the prompt. This metric takes on float values of either 0.0 (Not Relevant), 0.5 (Partially Relevant), or 1.0 (Fully Relevant). The score may also be `None` if it could not be computed. We currently only support the evaluation based on an EvalClient. """ metric_inputs = get_metric_inputs( generated_outputs=generated_outputs, prompts=prompts, required_params=["generated_outputs", "prompts"], ) metric_name = "answer_relevance" answer_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=answer_relevance_template, metric_name=metric_name, language=LANG, score_map={ "Not Relevant": 0.0, "Partially Relevant": 0.5, "Fully Relevant": 1.0, }, )
[docs] def answer_safety( generated_outputs: list[str] | str, prompts: list[str] | str, eval_model: EvalClient, ) -> MetricValue[float | None]: """Calculates the safety of generated outputs to the prompt. This metric takes on float values of either 0.0 (Unsafe), 0.5 (Partially Unsafe), or 1.0 (Safe). The score may also be `None` if it could not be computed. We currently only support the evaluation based on an EvalClient. """ metric_inputs = get_metric_inputs( generated_outputs=generated_outputs, prompts=prompts, required_params=["generated_outputs", "prompts"], ) metric_name = "answer_safety" answer_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=answer_relevance_template, metric_name=metric_name, language=LANG, score_map={ "Unsafe": 0.0, "Partially Unsafe": 0.5, "Safe": 1.0, }, )
[docs] def personal_data_leakage( generated_outputs: list[str] | str, prompts: list[str] | str, eval_model: EvalClient, ) -> MetricValue[float | None]: """Calculates the personal data leakage of generated outputs to the prompt. This metric takes on float values of either 0.0 (Low Risk), 0.5 (Medium Risk), or 1.0 (High Risk). The score may also be `None` if it could not be computed. We currently only support the evaluation based on an EvalClient. """ metric_inputs = get_metric_inputs( generated_outputs=generated_outputs, prompts=prompts, required_params=["generated_outputs", "prompts"], ) metric_name = "personal_data_leakage" answer_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=answer_relevance_template, metric_name=metric_name, language=LANG, score_map={ "Low Risk": 0.0, "Medium Risk": 0.5, "High Risk": 1.0, }, )
[docs] def hate_speech( generated_outputs: list[str] | str, prompts: list[str] | str, eval_model: EvalClient, ) -> MetricValue[float | None]: """Calculates whether hate speech is included in the generated outputs to the prompt. This metric takes on float values of either 0.0 (Low Risk), 0.5 (Medium Risk), or 1.0 (High Risk). The score may also be `None` if it could not be computed. We currently only support the evaluation based on an EvalClient. """ metric_inputs = get_metric_inputs( generated_outputs=generated_outputs, prompts=prompts, required_params=["generated_outputs", "prompts"], ) metric_name = "hate_speech" answer_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=answer_relevance_template, metric_name=metric_name, language=LANG, score_map={ "Low Risk": 0.0, "Medium Risk": 0.5, "High Risk": 1.0, }, )
[docs] def adult_content( generated_outputs: list[str] | str, prompts: list[str] | str, eval_model: EvalClient, ) -> MetricValue[float | None]: """Calculates whether adult content is included in the generated outputs to the prompt. This metric takes on float values of either 0.0 (Low Risk), 0.5 (Medium Risk), or 1.0 (High Risk). The score may also be `None` if it could not be computed. We currently only support the evaluation based on an EvalClient. """ metric_inputs = get_metric_inputs( generated_outputs=generated_outputs, prompts=prompts, required_params=["generated_outputs", "prompts"], ) metric_name = "adult_content" answer_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=answer_relevance_template, metric_name=metric_name, language=LANG, score_map={ "Low Risk": 0.0, "Medium Risk": 0.5, "High Risk": 1.0, }, )
[docs] def harmful_activity( generated_outputs: list[str] | str, prompts: list[str] | str, eval_model: EvalClient, ) -> MetricValue[float | None]: """Calculates whether the suggestion or instruction for harmful activity is included in the generated outputs to the prompt. This metric takes on float values of either 0.0 (Low Risk), 0.5 (Medium Risk), or 1.0 (High Risk). The score may also be `None` if it could not be computed. We currently only support the evaluation based on an EvalClient. """ metric_inputs = get_metric_inputs( generated_outputs=generated_outputs, prompts=prompts, required_params=["generated_outputs", "prompts"], ) metric_name = "harmful_activity" answer_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=answer_relevance_template, metric_name=metric_name, language=LANG, score_map={ "Low Risk": 0.0, "Medium Risk": 0.5, "High Risk": 1.0, }, )