Source code for langcheck.metrics.de.reference_based_text_quality

from __future__ import annotations

from rouge_score import rouge_scorer

from langcheck.metrics.de._tokenizers import DeTokenizer
from langcheck.metrics.eval_clients import EvalClient
from langcheck.metrics.metric_inputs import (
    get_metric_inputs_with_required_lists,
)
from langcheck.metrics.metric_value import MetricValue
from langcheck.metrics.scorer.hf_models import (
    SentenceTransformerSimilarityScorer,
)
from langcheck.utils.progress_bar import tqdm_wrapper

LANG = "de"


[docs] def semantic_similarity( generated_outputs: list[str] | str, reference_outputs: list[str] | str, prompts: list[str] | str | None = None, eval_model: str | EvalClient = "local", ) -> MetricValue[float]: """Calculates the semantic similarities between the generated outputs and the reference outputs. The similarities are computed as the cosine similarities between the generated and reference embeddings. This metric takes on float values between [-1, 1], but typically ranges between 0 and 1 where 0 is minimum similarity and 1 is maximum similarity. We currently support two embedding model types: 1. The 'local' type, where the MODEL_NAME model is downloaded from HuggingFace and run locally. This is the default model type and there is no setup needed to run this. 2. The EvalClient type, where you can use a similarlity scorer returned by the given EvalClient. The scorer is typically implemented using the embedding APIs of cloud services. The implementation details are explained in each of the concrete EvalClient classes. Ref: https://huggingface.co/tasks/sentence-similarity https://www.sbert.net/docs/usage/semantic_textual_similarity.html Args: generated_outputs: The model generated output(s) to evaluate reference_outputs: The reference output(s) prompts: The prompts used to generate the output(s). Prompts are optional metadata and not used to calculate the metric. eval_model: The type of model to use ('local' or the EvalClient instance used for the evaluation). default 'local' Returns: An :class:`~langcheck.metrics.metric_value.MetricValue` object """ metric_inputs, [generated_outputs, reference_outputs] = ( get_metric_inputs_with_required_lists( generated_outputs=generated_outputs, reference_outputs=reference_outputs, prompts=prompts, required_params=["generated_outputs", "reference_outputs"], ) ) if eval_model == "local": scorer = SentenceTransformerSimilarityScorer(language=LANG) else: # EvalClient assert isinstance( eval_model, EvalClient ), "An EvalClient must be provided for non-local model types." scorer = eval_model.similarity_scorer() scores = scorer.score(generated_outputs, reference_outputs) return MetricValue( metric_name="semantic_similarity", metric_inputs=metric_inputs, explanations=None, metric_values=scores, language=LANG, )
[docs] def rouge1( generated_outputs: list[str] | str, reference_outputs: list[str] | str, prompts: list[str] | str | None = None, ) -> MetricValue[float]: """Calculates the F1 metrics of the ROUGE-1 scores between the generated outputs and the reference outputs. It evaluates the overlap of unigrams (single tokens) between the generated outputs and the reference outputs. This metric takes on float values between [0, 1], where 0 is no overlap and 1 is complete overlap. Ref: https://github.com/google-research/google-research/tree/master/rouge Args: generated_outputs: The model generated output(s) to evaluate reference_outputs: The reference output(s) prompts: The prompts used to generate the output(s). Prompts are optional metadata and not used to calculate the metric. Returns: An :class:`~langcheck.metrics.metric_value.MetricValue` object """ metric_inputs, [generated_outputs, reference_outputs] = ( get_metric_inputs_with_required_lists( generated_outputs=generated_outputs, reference_outputs=reference_outputs, prompts=prompts, required_params=["generated_outputs", "reference_outputs"], ) ) scores = _rouge(generated_outputs, reference_outputs, "rouge1") return MetricValue( metric_name="rouge1", metric_inputs=metric_inputs, explanations=None, metric_values=scores, language=LANG, )
[docs] def rouge2( generated_outputs: list[str] | str, reference_outputs: list[str] | str, prompts: list[str] | str | None = None, ) -> MetricValue[float]: """Calculates the F1 metrics of the ROUGE-2 scores between the generated outputs and the reference outputs. It evaluates the overlap of bigrams (two adjacent tokens) between the generated outputs and the reference outputs. This metric takes on float values between [0, 1], where 0 is no overlap and 1 is complete overlap. Ref: https://github.com/google-research/google-research/tree/master/rouge Args: generated_outputs: The model generated output(s) to evaluate reference_outputs: The reference output(s) prompts: The prompts used to generate the output(s). Prompts are optional metadata and not used to calculate the metric. Returns: An :class:`~langcheck.metrics.metric_value.MetricValue` object """ metric_inputs, [generated_outputs, reference_outputs] = ( get_metric_inputs_with_required_lists( generated_outputs=generated_outputs, reference_outputs=reference_outputs, prompts=prompts, required_params=["generated_outputs", "reference_outputs"], ) ) scores = _rouge(generated_outputs, reference_outputs, "rouge2") return MetricValue( metric_name="rouge2", metric_inputs=metric_inputs, explanations=None, metric_values=scores, language=LANG, )
[docs] def rougeL( generated_outputs: list[str] | str, reference_outputs: list[str] | str, prompts: list[str] | str | None = None, ) -> MetricValue[float]: """Calculates the F1 metrics of the ROUGE-L scores between the generated outputs and the reference outputs. It evaluates the longest common subsequence (LCS) between the generated outputs and the reference outputs. This metric takes on float values between [0, 1], where 0 means that the LCS is empty and 1 means that the reference and generated outputs are the same. Ref: https://github.com/google-research/google-research/tree/master/rouge Args: generated_outputs: The model generated output(s) to evaluate reference_outputs: The reference output(s) prompts: The prompts used to generate the output(s). Prompts are optional metadata and not used to calculate the metric. Returns: An :class:`~langcheck.metrics.metric_value.MetricValue` object """ metric_inputs, [generated_outputs, reference_outputs] = ( get_metric_inputs_with_required_lists( generated_outputs=generated_outputs, reference_outputs=reference_outputs, prompts=prompts, required_params=["generated_outputs", "reference_outputs"], ) ) # The `rouge_score` package has two flavors of ROUGE-L [1]: # - 1) sentence-level, where newline characters are ignored # - 2) summary-level, where newline characters are interpreted as sentence # boundaries # # We use (2) here (i.e. `rougeLsum`) because this is how `pyrouge` computes # the ROUGE-L score (https://github.com/bheinzerling/pyrouge), which is a # Python wrapper around original perl script implementation. # # [1] https://github.com/google-research/google-research/tree/master/rouge#two-flavors-of-rouge-l scores = _rouge(generated_outputs, reference_outputs, "rougeLsum") return MetricValue( metric_name="rougeL", metric_inputs=metric_inputs, explanations=None, metric_values=scores, language=LANG, )
def _rouge( generated_outputs: list[str], reference_outputs: list[str], rouge_type: str ) -> list[float]: """Helper function for computing the rouge1, rouge2, and rougeL metrics. This uses Google Research's implementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge Args: generated_outputs: A list of model generated outputs to evaluate reference_outputs: A list of reference outputs rouge_type: rouge1, rouge2, or rougeLsum Returns: A list of F1 values of the ROUGE scores """ assert rouge_type in ["rouge1", "rouge2", "rougeLsum"] tokenizer = DeTokenizer() scorer = rouge_scorer.RougeScorer( [rouge_type], use_stemmer=True, tokenizer=tokenizer ) scores = [] for gen, ref in tqdm_wrapper( zip(generated_outputs, reference_outputs), total=len(generated_outputs) ): score = scorer.score(gen, ref) scores.append(score[rouge_type].fmeasure) return scores