Source code for langcheck.metrics.en.source_based_text_quality

from __future__ import annotations

import nltk
import torch
import torch.nn as nn
from transformers.models.auto.configuration_auto import AutoConfig
from transformers.models.auto.modeling_auto import AutoModelForSeq2SeqLM
from transformers.models.auto.tokenization_auto import AutoTokenizer

from langcheck.metrics.eval_clients import EvalClient
from langcheck.metrics.metric_inputs import (
    get_metric_inputs,
    get_metric_inputs_with_required_lists,
)
from langcheck.metrics.metric_value import MetricValue
from langcheck.utils.progress_bar import tqdm_wrapper

_factual_consistency_model_path = "MingZhong/unieval-fact"
_factual_consistency_config = None
_factual_consistency_tokenizer = None
_factual_consistency_model = None

LANG = "en"


[docs] def factual_consistency( generated_outputs: list[str] | str, sources: list[str] | str, prompts: list[str] | str | None = None, eval_model: str | EvalClient = "local", ) -> MetricValue[float | None]: """Calculates the factual consistency between the generated outputs and the sources. This metric takes on float values between [0, 1], where 0 means that the output is not at all consistent with the source text, and 1 means that the output is fully consistent with the source text. (NOTE: when using an EvalClient, the factuality scores are either 0.0, 0.5, or 1.0. The score may also be `None` if it could not be computed.) We currently support two evaluation model types: 1. The 'local' type, where the 'unieval-fact' model is downloaded from HuggingFace and run locally. This is the default model type and there is no setup needed to run this. 2. The EvalClient type, where you can use an EvalClient typically implemented with an LLM. The implementation details are explained in each of the concrete EvalClient classes. Args: generated_outputs: The model generated output(s) to evaluate sources: The source text(s), one string per generated output prompts: The prompts used to generate the output(s). Prompts are optional metadata and not used to calculate the metric. eval_model: The type of model to use ('local' or the EvalClient instance used for the evaluation). default 'local' Returns: An MetricValue object """ metric_inputs, [generated_outputs, sources] = ( get_metric_inputs_with_required_lists( generated_outputs=generated_outputs, sources=sources, prompts=prompts, required_params=["generated_outputs", "sources"], ) ) metric_name = "factual_consistency" if eval_model == "local": scores = _factual_consistency_local(generated_outputs, sources) explanations = None return MetricValue( metric_name=metric_name, metric_inputs=metric_inputs, explanations=explanations, # type: ignore (pyright doesn't understand that a list of floats is a list of optional floats) metric_values=scores, language="en", ) else: # EvalClient assert isinstance(eval_model, EvalClient), ( "An EvalClient must be provided for non-local model types." ) factual_consistency_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) factual_consistency_assessment_to_score = { "Fully Consistent": 1.0, "Partially Consistent": 0.5, "Not Consistent": 0.0, } return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=factual_consistency_template, metric_name=metric_name, language=LANG, score_map=factual_consistency_assessment_to_score, )
def _factual_consistency_local( generated_outputs: list[str], sources: list[str] ) -> list[float]: """Calculates the factual consistency between each generated sentence and its corresponding source text. The factual consistency score for one generated output is computed as the average of the per-sentence consistencies of the generated output with the source text The consistency is computed by querying the UniEval-fact model that has been pre-trained to evaluate factual consistency. Ref: https://github.com/maszhongming/UniEval Args: generated_outputs: The model generated output(s) to evaluate sources: The source text(s), one string per generated output Returns: A list of scores """ # Confirm necessary data for nltk.tokenize.sent_tokenize() exists try: nltk.data.find("tokenizers/punkt_tab") except LookupError: nltk.download("punkt_tab") # Split the generated outputs into individual sentences. This is consistent # with how UniEval calculates factual consistency, where the factual # consistency of each generated sentence gets averaged. # (https://github.com/maszhongming/UniEval/blob/509075cc87bb64f239180ece460025466b260383/metric/evaluator.py#L261) srcs_list, gen_sentences_list = [], [] num_sentences_list = [] for src, gen in tqdm_wrapper( zip(sources, generated_outputs), desc="Splitting generated outputs into sentences", total=len(generated_outputs), ): gen_sentences = nltk.tokenize.sent_tokenize(gen) num_sentences_list.append(len(gen_sentences)) gen_sentences_list += gen_sentences srcs_list += [src] * len(gen_sentences) global \ _factual_consistency_config, \ _factual_consistency_tokenizer, \ _factual_consistency_model if _factual_consistency_config is None: _factual_consistency_config = AutoConfig.from_pretrained( _factual_consistency_model_path ) if _factual_consistency_tokenizer is None: _factual_consistency_tokenizer = AutoTokenizer.from_pretrained( _factual_consistency_model_path ) if _factual_consistency_model is None: _factual_consistency_model = AutoModelForSeq2SeqLM.from_pretrained( _factual_consistency_model_path, config=_factual_consistency_config ) _factual_consistency_model.eval() pos_id = _factual_consistency_tokenizer("Yes")["input_ids"][0] neg_id = _factual_consistency_tokenizer("No")["input_ids"][0] softmax = nn.Softmax(dim=1) model_input_list = [] for src, gen in zip(srcs_list, gen_sentences_list): model_input = ( f"question: Is this claim consistent with the document? </s> " f"claim: {gen} </s> " f"document: {src}" ) model_input_list.append(model_input) # Specifying the targets is required to run the model, but has no effect on # the score target_list = ["No" for _ in range(len(model_input_list))] batch_size = 8 score_list = [] for i in tqdm_wrapper( range(0, len(model_input_list), batch_size), total=(len(model_input_list) + batch_size - 1) // batch_size, ): inputs = model_input_list[i : i + batch_size] targets = target_list[i : i + batch_size] with torch.no_grad(): encoded_inputs = _factual_consistency_tokenizer( inputs, truncation=True, padding=True, return_tensors="pt" ) encoded_targets = _factual_consistency_tokenizer( targets, truncation=True, padding=True, return_tensors="pt" ) inputs_tokens = encoded_inputs["input_ids"] inputs_mask = encoded_inputs["attention_mask"] targets_tokens = encoded_targets["input_ids"][:, 0].unsqueeze(-1) outputs = _factual_consistency_model( input_ids=inputs_tokens, attention_mask=inputs_mask, labels=targets_tokens, ) logits = outputs.logits.view( -1, _factual_consistency_model.config.vocab_size ) pos_score = softmax(logits)[:, pos_id] neg_score = softmax(logits)[:, neg_id] score_list += [ x.item() for x in pos_score / (pos_score + neg_score) ] # The score for each output is the average of the scores of its sentences score_per_output = [] start_idx = 0 for num in tqdm_wrapper(num_sentences_list, desc="Calculating scores"): scores_for_output = score_list[start_idx : start_idx + num] score_per_output.append(sum(scores_for_output) / num) start_idx += num return score_per_output
[docs] def context_relevance( sources: list[str] | str, prompts: list[str] | str, eval_model: EvalClient ) -> MetricValue[float | None]: """Calculates the relevance of the sources to the prompts. This metric takes on float values between [0, 1], where 0 means that the source text is not at all relevant to the prompt, and 1 means that the source text is fully relevant to the prompt. We currently only support the evaluation based on an EvalClient. Args: sources: The source text(s), one string per prompt prompts: The prompt(s) eval_model: The EvalClient instance used for the evaluation """ metric_inputs = get_metric_inputs( prompts=prompts, sources=sources, required_params=["prompts", "sources"], ) metric_name = "context_relevance" context_relevance_template = eval_model.load_prompt_template( language=LANG, metric_name=metric_name ) context_relevance_assessment_to_score = { "Fully Relevant": 1.0, "Partially Relevant": 0.5, "Not Relevant": 0.0, } return eval_model.compute_metric_values_from_template( metric_inputs=metric_inputs, template=context_relevance_template, metric_name=metric_name, language=LANG, score_map=context_relevance_assessment_to_score, )